Q:

prove that (sec 12A-1)/(sec 6A-1)=tan 12A/tan 3A

Accepted Solution

A:
Let [tex]x=3A[/tex]. Recall the following identities,[tex]\cos^2\theta=\dfrac{1+\cos2\theta}2[/tex][tex]\sin^2\theta=\dfrac{1-\cos2\theta}2[/tex][tex]\sin2\theta=2\sin\theta\cos\theta[/tex]Now,[tex]\dfrac{\sec12A-1}{\sec6A-1}=\dfrac{\sec4x-1}{\sec2x-1}[/tex][tex]=\dfrac{\cos2x(1-\cos4x)}{\cos4x(1-\cos2x)}[/tex][tex]=\dfrac{2\cos2x\sin^22x}{\cos4x(1-\cos2x)}[/tex][tex]=\dfrac{2\cos2x\sin^22x(1+\cos2x)}{\cos4x(1-\cos^22x)}=\dfrac{2\cos2x\sin^22x(1+\cos2x)}{\cos4x\sin^22x}=\dfrac{2\cos2x(1+\cos2x)}{\cos4x}[/tex][tex]=\dfrac{4\cos2x\cos^2x}{\cos4x}[/tex][tex]=\dfrac{4\cos2x\cos^2x\sin4x}{\cos4x\sin4x}=\dfrac{4\cos2x\cos^2x\tan4x}{\sin4x}[/tex][tex]=\dfrac{4\cos2x\cos^2x\tan4x}{2\sin2x\cos2x}=\dfrac{2\cos^2x\tan4x}{\sin2x}[/tex][tex]=\dfrac{2\cos^2x\tan4x}{2\sin x\cos x}=\dfrac{\cos x\tan4x}{\sin x}[/tex][tex]=\dfrac{\tan4x}{\frac{\sin x}{\cos x}}=\dfrac{\tan4x}{\tan x}=\dfrac{\tan12A}{\tan3A}[/tex]QED